Essential Spectrum

Ethan Y. Jaffe

The purpose of this note is to prove several equivalent characterizations of the essential spectrum.

Definition 1.1. Let $T : H \to H$ be a bounded self-adjoint operator on a Hilbert space. Then $\lambda \in \sigma_{\text{ess}}(T)$ if $T - \lambda$ is not Fredholm.

We have the elementary consequences:

Proposition 1.2. $\sigma_{ess}(T)$ satisfies:

- (i) $\sigma_{ess}(T) \subset \sigma(T);$
- (ii) $\sigma_{ess}(T)$ is closed;
- (iii) if K is a (self-adjoint) compact operator, then $\sigma_{ess}(T) = \sigma_{ess}(T + K)$.

Proof. (i) is clear since any invertible operator is Fredholm. (ii) follows from the fact that the set of Fredholm operators is open, and that the map $\lambda \mapsto T - \lambda$ is continuous. (iii) is clear since $T - \lambda$ is Fredholm implies that $T + K - \lambda$ is Fredholm. \Box

Now we prove the following:

Theorem 1.3. The following are equivalent:

- (i) $\lambda \in \sigma_{ess}(T);$
- (ii) (Weyl's Criterion) there exists a sequence ψ_k with $\|\psi_k\| = 1$ such that

 $(T - \lambda)\psi_k \to 0$

and ψ_k has no convergent subsequence;

- (iii) λ is an eigenvalue of infinite multiplicity (i.e. dim ker $T \lambda = \infty$) or there exists $\mu_n \in \sigma(T)$ such that $\mu_n \to \lambda$;
- (iv) for any self-adjoint compact operator $K, \lambda \in \sigma(T+K);$

Proof. First observe that by self-adjointness, ker $T - \lambda = \ker(T - \lambda)^{\perp} = \overline{\operatorname{im} T - \lambda}$. In particular $T - \lambda$ is Fredholm if and only if dim ker $T - \lambda < \infty$ and im $T - \lambda$ is closed. We show that (i) is equivalent to each of (ii) , (iii) , (iv) .

(ii) Suppose (ii) did not hold for λ . Then there exists some $c > 0$ such that

$$
\inf_{\|\psi\|=1,\psi\in\ker(T-\lambda)^{\perp}}\|(T-\lambda)\psi\|\geq c.
$$

Indeed, if not then there would be a sequence ψ_k with $\|\psi_k\| = 1$ and $\psi_k \in \ker(T - \lambda)^{\perp}$ with $(T - \lambda)\psi_k \to 0$, and so since (ii) does not hold, a convergent subsequence $\psi_{n_k} \to$ ψ . Then $(T - \lambda)\psi = 0$, $\|\psi\| = 1$ and $\psi \in \ker(T - \lambda)^{\perp}$, a contradiction. Suppose $y \in \overline{\text{im }T-\lambda}$. Then there is a sequence ψ_k with $(T-\lambda)\psi_k \to \varphi$. Projecting onto $\ker(T-\lambda)^{\perp}$, we may assume that $\psi_k \in \ker(T-\lambda)^{\perp}$. In particular $(T-\lambda)\psi_k$ is Cauchy, and since

$$
c\|\psi_k - \psi_j\| \leq \|(T - \lambda)(\psi_k - \psi_j)\|,
$$

so is ψ_k . In particular, $\psi_k \to \psi$, and $\varphi = (T - \lambda)\psi \in \text{im}(T - \lambda)$. Thus $\text{im } T - \lambda$ is closed. Since (ii) does not hold, it is clear that dim ker($T - \lambda$) < ∞ . Thus $\lambda \notin \sigma_{\text{ess}}(T)$.

Now suppose $\lambda \notin \sigma_{\text{ess}}(T)$. Then $T - \lambda$ is Fredholm. In particular, im $T - \lambda$ is closed, and so

$$
(T - \lambda) : \ker(T - \lambda)^{\perp} \to \text{im } T - \lambda = \ker(T - \lambda)^{\perp}
$$

is invertible. Let ψ_k be any sequence with $\|\psi_k\| = 1$ and $(T - \lambda)\psi_k \to 0$. Let ψ'_k be the projection of ψ_k onto ker $(T - \lambda)^{\perp}$. Then $(T - \lambda)\psi'_k \to 0$, and so by invertibility, $\psi'_k \to 0$, too. Let $\psi''_k = \psi_k - \psi'_k$ be the projection onto ker $T - \lambda$. Since this is a finitediemensional space, there is a convergent subsequence ψ''_{n_k} . Thus ψ_{n_k} is convergent, so (ii) does not hold.

(iii) Suppose (iii) did not hold. Then dim ker(T – λ) < ∞ , and either $\lambda \notin \sigma(T)$ or it is an isolated point of $\sigma(T)$. In the first case, certainly $\lambda \notin \sigma_{\text{ess}}(T)$. In the second case, $\lambda \in \mathbf{R}$ and we claim that there exists $\varepsilon > 0$ such that

$$
||(T - \lambda)\varphi||^2 \ge \varepsilon^2 \left(||\varphi^2|| - ||\varphi'^2|| \right),
$$

where φ' is the projection of φ onto ker $T - \lambda$. Indeed, by the Spectral Theorem,

$$
||(T - \lambda)\varphi||^2 = \langle (T - \lambda)^2 \varphi, \rangle = \int_{\sigma(T)} (\mu - \lambda)^2 d\langle E_{\mu}\varphi, \varphi \rangle.
$$

Here dE_λ is the spectral measure and $d\langle E_\lambda\varphi,\varphi\rangle$ is the non-negative measure which it induces. In particular

$$
\int_{\sigma(T)} 1 \, d\langle E_{\mu}\varphi, \varphi \rangle = ||\varphi||^2
$$

and

$$
\int_{\{\lambda\}} 1 \, d\langle E_{\mu}\varphi, \varphi \rangle
$$

is the norm of the projection of φ onto ker(T – λ). Since λ is isolated, there is some $\varepsilon > 0$ such that

$$
(\lambda - \varepsilon, \lambda + \varepsilon) \cap \sigma(T) = \emptyset.
$$

Thus, since $(\mu - \lambda)^2$ vanishes at $\mu = \lambda$.

$$
\int_{\sigma(T)} (\mu - \lambda)^2 d\langle E_{\mu}\varphi, \varphi \rangle
$$
\n
$$
= \int_{\sigma(T)\backslash {\{\lambda\}}} (\mu - \lambda)^2 d\langle E_{\mu}\varphi, \varphi \rangle
$$
\n
$$
= \int_{(\lambda - \varepsilon, \lambda + \varepsilon)^c \cap \sigma(T)} (\mu - \lambda)^2 d\langle E_{\mu}\varphi, \varphi \rangle
$$
\n
$$
\geq \varepsilon^2 \int_{(\lambda - \varepsilon, \lambda + \varepsilon)^c \cap \sigma(T)} d\langle E_{\mu}\varphi, \varphi \rangle
$$
\n
$$
= \varepsilon^2 \int_{\sigma(T)} 1 d\langle E_{\mu}\varphi, \varphi \rangle - \varepsilon^2 \int_{\{\lambda\}} 1 d\langle E_{\mu}\varphi, \varphi \rangle.
$$

Putting it all together yields that

$$
||(T - \lambda)\varphi||^2 \ge \varepsilon^2 \left(||\varphi^2|| - ||\varphi'^2|| \right).
$$

In particular $(T - \lambda)$ satisfies the estimate

$$
\inf_{\|\psi\|=1,\psi\in\ker(T-\lambda)^{\perp}}\|(T-\lambda)\psi\|\geq\varepsilon.
$$

As above, this implies that im $(T - \lambda)$ is closed. Thus, in all $T - \lambda$ is Fredholm.

Now suppose $\lambda \notin \sigma_{\text{ess}}(T)$. Then $T - \lambda$ is Fredholm, and so $\dim(\ker(T - \lambda)) < \infty$. If $\lambda \in \mathbb{C}$, then λ is a positive distance away from the spectrum. These together means that (iii) does not hold. We now handle $\lambda \in \mathbf{R}$.

Set $S = T - \lambda$. If $\lambda \in \mathbb{R}$, Then S is self-adjoint and Fredholm. We may picture S as a 2×2 matrix

$$
\begin{pmatrix} 0 & 0 \\ 0 & S_{\text{im }S} \end{pmatrix},
$$

where we use the decomposition

$$
H = \ker S + \operatorname{im} S = \ker S + \ker S^{\perp}
$$

to make sense of the matrix. Since ker $S = \text{im } S^{\perp}$ by self-adjointness, $S - \mu$ looks like the matrix

$$
\begin{pmatrix} -\mu & 0 \\ 0 & S_{\text{im}\,S} - \mu \end{pmatrix}.
$$

Since $S|_{\text{im }S} \to \text{im }S$ is invertible, $S_{\text{im }S} - \mu$ is invertible for small μ , it is clear from looking at the matrix that this means that so is $S - \mu$. Thus $T - \lambda - \mu$ is invertible for μ small, i.e. λ , should it be in $\sigma(T)$, is an isolated point. This completes the proof that (iii) does not hold.

(iv) Suppose $\lambda \in \sigma_{\text{ess}}(T)$. Then by the proposition, for any self-adjoint compact operator $K, \lambda \in \sigma_{\text{ess}}(T+K) \subseteq \sigma(T+K)$. Conversely, suppose $\lambda \notin \sigma_{\text{ess}}(T)$. If $\lambda \in \mathbb{C}$, then for any self-adjoint compact $K, \lambda \notin \sigma(T+K)$. If $\lambda \in \mathbf{R}$, write $S = T - \lambda$ as above, and let P be the orthogonal projection onto ker S . Then P has finite rank and is compact (and is self-adjoint since it is a projection). $S + P$ is invertible, since as a matrix it looks like

$$
\begin{pmatrix} 1 & 0 \\ 0 & S_{\text{im }S} \end{pmatrix}.
$$

Therefore, $\lambda \notin \sigma(T + P)$, and so (iv) does not hold.

 \Box

Remark 1.4. The set $\sigma(T) \setminus \sigma_{\text{ess}}(T)$ is often call the discrete spectrum, denoted $\sigma_{\text{disc}}(T)$, and by (iii) is characterized by the property that $\lambda \in \sigma_{disc}(T)$ if and only if $0 < \dim \ker T - \lambda < \infty$ and λ is an isolated point in the spectrum. Indeed, the only thing which needs justification is the strict inequality dim ker $T - \lambda > 0$. But $T - \lambda$ is Fredholm, and so im $T - \lambda$ is closed, so the only way $T - \lambda$ can fail to be invertible is if $T - \lambda$ has non-trivial kernel.

Remark 1.5. We remark that Weyl's criterion has an analogue for $\sigma(T)$: $\lambda \in \sigma(T)$ if and only if there exists a sequence ψ_k with $\|\psi_k\| = 1$ and $(T - \lambda)\psi_k \to 0$. There is no assumption on not having a convergent subsequence. The proof is similar to (ii).