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The purpose of this note is to prove several equivalent characterizations of the essential
spectrum.

Definition 1.1. Let T : H → H be a bounded self-adjoint operator on a Hilbert space.
Then λ ∈ σess(T ) if T − λ is not Fredholm.

We have the elementary consequences:

Proposition 1.2. σess(T ) satisfies:

(i) σess(T ) ⊆ σ(T );

(ii) σess(T ) is closed;

(iii) if K is a (self-adjoint) compact operator, then σess(T ) = σess(T +K).

Proof. (i) is clear since any invertible operator is Fredholm. (ii) follows from the fact that
the set of Fredholm operators is open, and that the map λ 7→ T − λ is continuous. (iii) is
clear since T − λ is Fredholm implies that T +K − λ is Fredholm.

Now we prove the following:

Theorem 1.3. The following are equivalent:

(i) λ ∈ σess(T );

(ii) (Weyl’s Criterion) there exists a sequence ψk with ‖ψk‖ = 1 such that

(T − λ)ψk → 0

and ψk has no convergent subsequence;

(iii) λ is an eigenvalue of infinite multiplicity (i.e. dimkerT − λ = ∞) or there exists
µn ∈ σ(T ) such that µn → λ;

(iv) for any self-adjoint compact operator K, λ ∈ σ(T +K);

Proof. First observe that by self-adjointness, kerT − λ = ker(T − λ)⊥ = imT − λ. In
particular T − λ is Fredholm if and only if dimkerT − λ < ∞ and imT − λ is closed. We
show that (i) is equivalent to each of (ii), (iii), (iv).
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(ii) Suppose (ii) did not hold for λ. Then there exists some c > 0 such that

inf
‖ψ‖=1,ψ∈ker(T−λ)⊥

‖(T − λ)ψ‖ ≥ c.

Indeed, if not then there would be a sequence ψk with ‖ψk‖ = 1 and ψk ∈ ker(T − λ)⊥
with (T − λ)ψk → 0, and so since (ii) does not hold, a convergent subsequence ψnk

→
ψ. Then (T − λ)ψ = 0, ‖ψ‖ = 1 and ψ ∈ ker(T − λ)⊥, a contradiction. Suppose
y ∈ imT − λ. Then there is a sequence ψk with (T − λ)ψk → ϕ. Projecting onto
ker(T −λ)⊥, we may assume that ψk ∈ ker(T −λ)⊥. In particular (T −λ)ψk is Cauchy,
and since

c‖ψk − ψj‖ ≤ ‖(T − λ)(ψk − ψj)‖,
so is ψk. In particular, ψk → ψ, and ϕ = (T − λ)ψ ∈ im(T − λ). Thus imT − λ is
closed. Since (ii) does not hold, it is clear that dimker(T −λ) <∞. Thus λ 6∈ σess(T ).

Now suppose λ 6∈ σess(T ). Then T − λ is Fredholm. In particular, imT − λ is closed,
and so

(T − λ) : ker(T − λ)⊥ → imT − λ = ker(T − λ)⊥

is invertible. Let ψk be any sequence with ‖ψk‖ = 1 and (T − λ)ψk → 0. Let ψ′k be
the projection of ψk onto ker(T − λ)⊥. Then (T − λ)ψ′k → 0, and so by invertibility,
ψ′k → 0, too. Let ψ′′k = ψk − ψ′k be the projection onto kerT − λ. Since this is a finite-
diemensional space, there is a convergent subsequence ψ′′nk

. Thus ψnk
is convergent, so

(ii) does not hold.

(iii) Suppose (iii) did not hold. Then dimker(T − λ) < ∞, and either λ 6∈ σ(T ) or it is
an isolated point of σ(T ). In the first case, certainly λ 6∈ σess(T ). In the second case,
λ ∈ R and we claim that there exists ε > 0 such that

‖(T − λ)ϕ‖2 ≥ ε2
(
‖ϕ2‖ − ‖ϕ′2‖

)
,

where ϕ′ is the projection of ϕ onto kerT − λ. Indeed, by the Spectral Theorem,

‖(T − λ)ϕ‖2 = 〈(T − λ)2ϕ, 〉 =
∫
σ(T )

(µ− λ)2 d〈Eµϕ, ϕ〉.

Here dEλ is the spectral measure and d〈Eλϕ, ϕ〉 is the non-negative measure which it
induces. In particular ∫

σ(T )

1 d〈Eµϕ, ϕ〉 = ‖ϕ‖2

and ∫
{λ}

1 d〈Eµϕ, ϕ〉

is the norm of the projection of ϕ onto ker(T − λ). Since λ is isolated, there is some
ε > 0 such that

(λ− ε, λ+ ε) ∩ σ(T ) = ∅.
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Thus, since (µ− λ)2 vanishes at µ = λ.∫
σ(T )

(µ− λ)2 d〈Eµϕ, ϕ〉

=

∫
σ(T )\{λ}

(µ− λ)2 d〈Eµϕ, ϕ〉

=

∫
(λ−ε,λ+ε)c∩σ(T )

(µ− λ)2 d〈Eµϕ, ϕ〉

≥ ε2
∫
(λ−ε,λ+ε)c∩σ(T )

d〈Eµϕ, ϕ〉

= ε2
∫
σ(T )

1 d〈Eµϕ, ϕ〉 − ε2
∫
{λ}

1 d〈Eµϕ, ϕ〉.

Putting it all together yields that

‖(T − λ)ϕ‖2 ≥ ε2
(
‖ϕ2‖ − ‖ϕ′2‖

)
.

In particular (T − λ) satisfies the estimate

inf
‖ψ‖=1,ψ∈ker(T−λ)⊥

‖(T − λ)ψ‖ ≥ ε.

As above, this implies that im(T − λ) is closed. Thus, in all T − λ is Fredholm.

Now suppose λ 6∈ σess(T ). Then T − λ is Fredholm, and so dim(ker(T − λ)) < ∞. If
λ ∈ C, then λ is a positive distance away from the spectrum. These together means
that (iii) does not hold. We now handle λ ∈ R.

Set S = T − λ. If λ ∈ R, Then S is self-adjoint and Fredholm. We may picture S as
a 2× 2 matrix (

0 0
0 SimS

)
,

where we use the decomposition

H = kerS + imS = kerS + kerS⊥

to make sense of the matrix. Since kerS = imS⊥ by self-adjointness, S − µ looks like
the matrix (

−µ 0
0 SimS − µ

)
.

Since S|imS → imS is invertible, SimS − µ is invertible for small µ, it is clear from
looking at the matrix that this means that so is S − µ. Thus T − λ − µ is invertible
for µ small, i.e. λ, should it be in σ(T ), is an isolated point. This completes the proof
that (iii) does not hold.
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(iv) Suppose λ ∈ σess(T ). Then by the proposition, for any self-adjoint compact operator
K, λ ∈ σess(T +K) ⊆ σ(T +K). Conversely, suppose λ 6∈ σess(T ). If λ ∈ C, then for
any self-adjoint compact K, λ 6∈ σ(T +K). If λ ∈ R, write S = T − λ as above, and
let P be the orthogonal projection onto kerS. Then P has finite rank and is compact
(and is self-adjoint since it is a projection). S + P is invertible, since as a matrix it
looks like (

1 0
0 SimS

)
.

Therefore, λ 6∈ σ(T + P ), and so (iv) does not hold.

Remark 1.4. The set σ(T )\σess(T ) is often call the discrete spectrum, denoted σdiscr(T ), and
by (iii) is characterized by the property that λ ∈ σdiscr(T ) if and only if 0 < dimkerT−λ <∞
and λ is an isolated point in the spectrum. Indeed, the only thing which needs justification
is the strict inequality dimkerT − λ > 0. But T − λ is Fredholm, and so imT − λ is closed,
so the only way T − λ can fail to be invertible is if T − λ has non-trivial kernel.

Remark 1.5. We remark that Weyl’s criterion has an analogue for σ(T ): λ ∈ σ(T ) if and
only if there exists a sequence ψk with ‖ψk‖ = 1 and (T −λ)ψk → 0. There is no assumption
on not having a convergent subsequence. The proof is similar to (ii).
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