Essential Spectrum

Ethan Y. Jaffe

The purpose of this note is to prove several equivalent characterizations of the essential spectrum.

Definition 1.1. Let $T : H \to H$ be a bounded self-adjoint operator on a Hilbert space. Then $\lambda \in \sigma_{ess}(T)$ if $T - \lambda$ is not Fredholm.

We have the elementary consequences:

Proposition 1.2. $\sigma_{ess}(T)$ satisfies:

- (i) $\sigma_{ess}(T) \subseteq \sigma(T);$
- (ii) $\sigma_{ess}(T)$ is closed;
- (iii) if K is a (self-adjoint) compact operator, then $\sigma_{ess}(T) = \sigma_{ess}(T+K)$.

Proof. (i) is clear since any invertible operator is Fredholm. (ii) follows from the fact that the set of Fredholm operators is open, and that the map $\lambda \mapsto T - \lambda$ is continuous. (iii) is clear since $T - \lambda$ is Fredholm implies that $T + K - \lambda$ is Fredholm.

Now we prove the following:

Theorem 1.3. The following are equivalent:

- (i) $\lambda \in \sigma_{ess}(T);$
- (ii) (Weyl's Criterion) there exists a sequence ψ_k with $\|\psi_k\| = 1$ such that

$$(T-\lambda)\psi_k \to 0$$

and ψ_k has no convergent subsequence;

- (iii) λ is an eigenvalue of infinite multiplicity (i.e. dim ker $T \lambda = \infty$) or there exists $\mu_n \in \sigma(T)$ such that $\mu_n \to \lambda$;
- (iv) for any self-adjoint compact operator $K, \lambda \in \sigma(T+K)$;

Proof. First observe that by self-adjointness, $\ker T - \lambda = \ker (T - \lambda)^{\perp} = \overline{\operatorname{im} T - \lambda}$. In particular $T - \lambda$ is Fredholm if and only if dim $\ker T - \lambda < \infty$ and $\operatorname{im} T - \lambda$ is closed. We show that (i) is equivalent to each of (ii), (iii), (iv).

(ii) Suppose (ii) did not hold for λ . Then there exists some c > 0 such that

$$\inf_{\|\psi\|=1,\psi\in\ker(T-\lambda)^{\perp}}\|(T-\lambda)\psi\|\geq c.$$

Indeed, if not then there would be a sequence ψ_k with $\|\psi_k\| = 1$ and $\psi_k \in \ker(T-\lambda)^{\perp}$ with $(T-\lambda)\psi_k \to 0$, and so since (ii) does not hold, a convergent subsequence $\psi_{n_k} \to \psi$. Then $(T-\lambda)\psi = 0$, $\|\psi\| = 1$ and $\psi \in \ker(T-\lambda)^{\perp}$, a contradiction. Suppose $y \in \overline{\operatorname{im} T - \lambda}$. Then there is a sequence ψ_k with $(T-\lambda)\psi_k \to \varphi$. Projecting onto $\ker(T-\lambda)^{\perp}$, we may assume that $\psi_k \in \ker(T-\lambda)^{\perp}$. In particular $(T-\lambda)\psi_k$ is Cauchy, and since

$$c\|\psi_k - \psi_j\| \le \|(T - \lambda)(\psi_k - \psi_j)\|,$$

so is ψ_k . In particular, $\psi_k \to \psi$, and $\varphi = (T - \lambda)\psi \in \operatorname{im}(T - \lambda)$. Thus $\operatorname{im} T - \lambda$ is closed. Since (ii) does not hold, it is clear that $\dim \ker(T - \lambda) < \infty$. Thus $\lambda \notin \sigma_{\operatorname{ess}}(T)$.

Now suppose $\lambda \notin \sigma_{\text{ess}}(T)$. Then $T - \lambda$ is Fredholm. In particular, im $T - \lambda$ is closed, and so

$$(T - \lambda) : \ker(T - \lambda)^{\perp} \to \operatorname{im} T - \lambda = \ker(T - \lambda)^{\perp}$$

is invertible. Let ψ_k be any sequence with $\|\psi_k\| = 1$ and $(T - \lambda)\psi_k \to 0$. Let ψ'_k be the projection of ψ_k onto $\ker(T - \lambda)^{\perp}$. Then $(T - \lambda)\psi'_k \to 0$, and so by invertibility, $\psi'_k \to 0$, too. Let $\psi''_k = \psi_k - \psi'_k$ be the projection onto $\ker T - \lambda$. Since this is a finitediemensional space, there is a convergent subsequence ψ''_{n_k} . Thus ψ_{n_k} is convergent, so (ii) does not hold.

(iii) Suppose (iii) did not hold. Then dim ker $(T - \lambda) < \infty$, and either $\lambda \notin \sigma(T)$ or it is an isolated point of $\sigma(T)$. In the first case, certainly $\lambda \notin \sigma_{ess}(T)$. In the second case, $\lambda \in \mathbf{R}$ and we claim that there exists $\varepsilon > 0$ such that

$$\|(T-\lambda)\varphi\|^2 \ge \varepsilon^2 \left(\|\varphi^2\| - \|{\varphi'}^2\|\right),\,$$

where φ' is the projection of φ onto ker $T - \lambda$. Indeed, by the Spectral Theorem,

$$||(T-\lambda)\varphi||^2 = \langle (T-\lambda)^2\varphi, \rangle = \int_{\sigma(T)} (\mu-\lambda)^2 d\langle E_{\mu}\varphi, \varphi \rangle.$$

Here dE_{λ} is the spectral measure and $d\langle E_{\lambda}\varphi,\varphi\rangle$ is the non-negative measure which it induces. In particular

$$\int_{\sigma(T)} 1 \ d\langle E_{\mu}\varphi,\varphi\rangle = \|\varphi\|^2$$

and

$$\int_{\{\lambda\}} 1 \ d\langle E_{\mu}\varphi,\varphi\rangle$$

is the norm of the projection of φ onto ker $(T - \lambda)$. Since λ is isolated, there is some $\varepsilon > 0$ such that

$$(\lambda - \varepsilon, \lambda + \varepsilon) \cap \sigma(T) = \emptyset.$$

Thus, since $(\mu - \lambda)^2$ vanishes at $\mu = \lambda$.

$$\int_{\sigma(T)} (\mu - \lambda)^2 d\langle E_{\mu}\varphi, \varphi \rangle$$

= $\int_{\sigma(T) \setminus \{\lambda\}} (\mu - \lambda)^2 d\langle E_{\mu}\varphi, \varphi \rangle$
= $\int_{(\lambda - \varepsilon, \lambda + \varepsilon)^c \cap \sigma(T)} (\mu - \lambda)^2 d\langle E_{\mu}\varphi, \varphi \rangle$
 $\geq \varepsilon^2 \int_{(\lambda - \varepsilon, \lambda + \varepsilon)^c \cap \sigma(T)} d\langle E_{\mu}\varphi, \varphi \rangle$
= $\varepsilon^2 \int_{\sigma(T)} 1 d\langle E_{\mu}\varphi, \varphi \rangle - \varepsilon^2 \int_{\{\lambda\}} 1 d\langle E_{\mu}\varphi, \varphi \rangle$

Putting it all together yields that

$$\|(T-\lambda)\varphi\|^2 \ge \varepsilon^2 \left(\|\varphi^2\| - \|{\varphi'}^2\|\right).$$

In particular $(T - \lambda)$ satisfies the estimate

$$\inf_{\|\psi\|=1,\psi\in\ker(T-\lambda)^{\perp}} \|(T-\lambda)\psi\| \ge \varepsilon.$$

As above, this implies that $im(T - \lambda)$ is closed. Thus, in all $T - \lambda$ is Fredholm.

Now suppose $\lambda \notin \sigma_{\text{ess}}(T)$. Then $T - \lambda$ is Fredholm, and so dim $(\ker(T - \lambda)) < \infty$. If $\lambda \in \mathbf{C}$, then λ is a positive distance away from the spectrum. These together means that (iii) does not hold. We now handle $\lambda \in \mathbf{R}$.

Set $S = T - \lambda$. If $\lambda \in \mathbf{R}$, Then S is self-adjoint and Fredholm. We may picture S as a 2×2 matrix

$$\begin{pmatrix} 0 & 0 \\ 0 & S_{\operatorname{im} S} \end{pmatrix},$$

where we use the decomposition

$$H = \ker S + \operatorname{im} S = \ker S + \ker S^{\perp}$$

to make sense of the matrix. Since ker $S = \operatorname{im} S^{\perp}$ by self-adjointness, $S - \mu$ looks like the matrix

$$\begin{pmatrix} -\mu & 0\\ 0 & S_{\operatorname{im} S} - \mu \end{pmatrix}.$$

Since $S|_{\text{im }S} \to \text{im }S$ is invertible, $S_{\text{im }S} - \mu$ is invertible for small μ , it is clear from looking at the matrix that this means that so is $S - \mu$. Thus $T - \lambda - \mu$ is invertible for μ small, i.e. λ , should it be in $\sigma(T)$, is an isolated point. This completes the proof that (iii) does not hold. (iv) Suppose $\lambda \in \sigma_{\text{ess}}(T)$. Then by the proposition, for any self-adjoint compact operator $K, \lambda \in \sigma_{\text{ess}}(T+K) \subseteq \sigma(T+K)$. Conversely, suppose $\lambda \notin \sigma_{\text{ess}}(T)$. If $\lambda \in \mathbf{C}$, then for any self-adjoint compact $K, \lambda \notin \sigma(T+K)$. If $\lambda \in \mathbf{R}$, write $S = T - \lambda$ as above, and let P be the orthogonal projection onto ker S. Then P has finite rank and is compact (and is self-adjoint since it is a projection). S + P is invertible, since as a matrix it looks like

$$\begin{pmatrix} 1 & 0 \\ 0 & S_{\operatorname{im} S} \end{pmatrix}$$

Therefore, $\lambda \notin \sigma(T+P)$, and so (iv) does not hold.

Remark 1.4. The set $\sigma(T) \setminus \sigma_{\text{ess}}(T)$ is often call the discrete spectrum, denoted $\sigma_{\text{discr}}(T)$, and by (iii) is characterized by the property that $\lambda \in \sigma_{\text{discr}}(T)$ if and only if $0 < \dim \ker T - \lambda < \infty$ and λ is an isolated point in the spectrum. Indeed, the only thing which needs justification is the strict inequality dim $\ker T - \lambda > 0$. But $T - \lambda$ is Fredholm, and so $\operatorname{im} T - \lambda$ is closed, so the only way $T - \lambda$ can fail to be invertible is if $T - \lambda$ has non-trivial kernel.

Remark 1.5. We remark that Weyl's criterion has an analogue for $\sigma(T)$: $\lambda \in \sigma(T)$ if and only if there exists a sequence ψ_k with $\|\psi_k\| = 1$ and $(T - \lambda)\psi_k \to 0$. There is no assumption on not having a convergent subsequence. The proof is similar to (ii).